引用本文
  • 刘悦,赵可,羊新胜,赵勇.硼掺杂拓扑绝缘体Bi2Se3单晶的电输运性质研究[J].低温物理学报,2019,(3):198-203.    [点击复制]
  • LIUYue,ZHAOKe,YANGXinsheng,ZHAOYong.Studyof Transport Properties of Boron-doped Topological Insulator Bi2Se3[J].LOW TEMPERATURE PHYSICAL LETTERS,2019,(3):198-203.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1319次   下载 1796 本文二维码信息
码上扫一扫!
硼掺杂拓扑绝缘体Bi2Se3单晶的电输运性质研究
刘悦1, 赵可1, 羊新胜2, 赵勇2
0
(1.西南交通大学 物理科学与技术学院,成都,610031;2.西南交通大学, 超导与新能源研究开发中心,成都,610031)
摘要:
本文首次报道了用自助溶剂法(self-flux)制备优良的硼(B)掺杂硒化铋(Bi2BxSe3-x)样品的探索。实验结果显示掺杂样品中大部分B是以替代Se位方式存在,少量B以插入Bi2Se3晶格或范德瓦尔斯间隙的形式存在。当B的含量逐渐增加时,Bi2Se3的晶格常数c先减小后增加,且样品具有清晰的层状结构。掺杂量x=0.05的样品局部区域出现纳米带结构,同时该样品在低温下出现了明显的金属-绝缘转变现象。Bi2Se3样品电阻率随掺杂含量的增加而增加,表明B掺杂提高了样品表面态对整体电导的贡献,同时纳米带结构也有助于增加表面态的贡献。
关键词:  
DOI:10.13380/j.ltpl.2019.03.008
基金项目:
Studyof Transport Properties of Boron-doped Topological Insulator Bi2Se3
LIUYue1, ZHAOKe1, YANGXinsheng2, ZHAOYong2
(1.School of Physical Scienc eand Technology, South west Jiao tong University, Cheng du 61003, China;2.Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Super conductivity and New Energy R&D Center, South west Jiao tong University, Cheng du 61003, China)
Abstract:
Boron-doped Bi2Se3 (Bi2BxSe3-x) crystals were synthesized by a self-flux method. The crystal structure of B-doped Bi2Se3 was investigated by X-ray diffractometry and Raman spectroscopy. The scanning electronic microscopy and physical property measurement system were used to measure the morphology and electrical transport properties. The results show that most of B atoms incorporated into the structure occupy Se sites while some other B atoms are inserted between the lattice sites or in the van der Waals gap. The lattice constant c of Bi2Se3 is first decreased and then increased by the increasing the dopant content. Nanoribbon structures appear in some regions of the sample with the doping content x=0.05. The resistivity of Bi2Se3 sample increases with the increase of doping content, indicating that B doping increases the contribution of surface conductance. The nanoribbon structure also helps increase the surface contribution.
Key words:  

用微信扫一扫

用微信扫一扫