引用本文: |
-
朱英伟,玄永伟,王鹏,刘雪山,聂妮纳,雷勇.矩形截面超导线圈的径高比对最大磁场点位置和幅值的影响分析[J].低温物理学报,2021,(3):200-206. [点击复制]
- ZHU Yingwei,XUAN Yongwei,WANG Peng,LIU Xueshan,NIE Nina,LEI Yong.Analysis of the Position and Amplitude of the Maximum Magnetic Field in the Rectangular Cross-section Superconducting Coil with Different Aspect Ratio[J].LOW TEMPERATURE PHYSICAL LETTERS,2021,(3):200-206. [点击复制]
|
|
|
|
本文已被:浏览 710次 下载 2120次 |
 码上扫一扫! |
矩形截面超导线圈的径高比对最大磁场点位置和幅值的影响分析 |
朱英伟, 玄永伟, 王鹏, 刘雪山, 聂妮纳, 雷勇
|
|
(四川大学电气工程学院, 成都 610065) |
|
摘要: |
为了充分利用超导线材的载流能力, 需要精确计算超导线圈产生的最大磁场值, 还需要明确最大磁场值所处的具体位置. 其中, 最大磁场点的位置主要由线圈的形状( 径高比) 决定. 本文基于单积分法并通过 MATLAB编程, 将矩形截面线圈的径高比α 和β 参数化, 计算分析线圈内壁边上和端面边上各点磁场的变化趋势. 同时, 利用电磁场有限元软件 ANSYS, 对矩形截面线圈的空间磁场进行仿真分析, 得到线圈的内壁磁场系数、 端面磁场系数和最大磁场系数随α 和β 的变化规律; 进而, 计算并寻找到了线圈截面上最大磁场点的位置和幅值. 综合分析表明, 线圈内壁边上的最大磁场点并不是始终位于内壁中点Bc 处, 而是可能偏离端点Be 一小段距离的某点(a1 ,b -δ )处; 线圈端面边上的最大磁场点一定不位于端点Be 处, 而是偏离端点Be 一小段距离的某点(a1 +δ ,b ) 处. 本文给出了线圈截面上最大磁场系数 K mc 对应于线圈径高比(α ,β ) 变化的等高曲线, 矩形截面超导线圈最大磁场值可以通过计算内壁中点的磁场值与最大磁场系数的乘积获得. |
关键词: 超导线圈 径高比 最大磁场 单积分法 |
DOI: |
|
基金项目: |
|
Analysis of the Position and Amplitude of the Maximum Magnetic Field in the Rectangular Cross-section Superconducting Coil with Different Aspect Ratio |
ZHU Yingwei, XUAN Yongwei, WANG Peng, LIU Xueshan, NIE Nina, LEI Yong
|
(Sichuan University , School of Electrical Engineering , Chengdu 610065) |
Abstract: |
For making full use of the current-carrying capacity of the superconducting wires, it is necessary to accurately calculate the maximum magnetic field generated by the superconducting coil, and to clarify the specific location of the maximum magnetic field. The position of the maximum magnetic field is mainly determined by the shape of the coil (Aspect ratio). Based on the single integration method and MATLAB programming, this paper parameterizes the α and β of the rectangular cross-section coil, calculates and analyzes the change of the magnetic field at each point on the inner wall and end edge of the coil. The FEM software ANSYS was used to simulate and analyze the magnetic field of the rectangular cross-section coil, and obtain inner wall magnetic field coefficient, end edge magnetic field coefficient, maximum magnetic field coefficient of the coil with different α and β. The position and amplitude of the maximum magnetic field were calculated and found on the coil cross-section. Comprehensive analysis shows that the maximum magnetic field on the inner wall is not always located at the midpoint Be of the inner wall, but at a certain point (a1 ,b-δ) that may deviate from the endpoint Be a small distance ;the maximum magnetic field point on the end edge of the coil must not be located at the endpoint Be, but at a certain point(a1+,b)deviated from the endpoint Be a small distance .This paper gives the contour curve of the maximum magnetic field coefficient Kmc with different α and β,the maximum magnetic field value of the rectangular cross-section superconducting coil can be obtained by calculating the product of the magnetic field at the midpoint of the inner wall and the maximum magnetic field coefficient. |
Key words: upper conducting coil Aspect ratio Maximum magnetic field Single integration method |
|
|
|
|
|