引用本文
  • 丁智,杨志强,夏梦寒,王昌,刘禹,王灵.船用新型闪蒸气再液化工艺设计与分析[J].低温物理学报,2023,(3):169-182.    [点击复制]
  • DING Zhi,YANG Zhiqiang,XIA Menghan,WANG Chang,LIU Yu,WANG Ling.Design and Analysis of New Marine Boiled off gas Re-liquefaction System[J].LOW TEMPERATURE PHYSICAL LETTERS,2023,(3):169-182.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 840次   下载 1742 本文二维码信息
码上扫一扫!
船用新型闪蒸气再液化工艺设计与分析
丁智1, 杨志强1, 夏梦寒2, 王昌1, 刘禹1, 王灵2
0
(1.中国船舶集团有限公司第七一一研究所, 上海 201203;2.上海齐耀动力技术有限公司, 上海 201203)
摘要:
液化天然气(Liquefied natural gas,LNG) 因单位热值二氧化碳排放量低、 能量密度高、 清洁等优点, 成为世界能源市场上增速最快的化石燃料. 利用液化系统对 LNG 储运过程产生的闪蒸气(Boiled off gas,BOG) 进行液化回收, 不仅有显著的经济效益, 同时可以满足环保要求. 基于 LNG 运输过程中 BOG 再液化需求, 本文设计了带冷量回收的新型混合工质再液化系统, 同时建立了4 种常规 BOG 液化系统模型, 利用化工流程模拟软件分析了典型工况下各系统的工作原理及内部能量传递关系, 并对比了不同工况下各系统性能. 结果表明, 在所设进出口条件下: 当 BOG 组分为纯甲烷时, 混合工质液化系统比功耗及所需冷却水量明显低于氮膨胀液化系统, 新型混合工质液化系统比功耗最低为0.53 kWh· kg-1 ;BOG 流量每增加100 kg· h-1 , 氮膨胀液化系统功耗增加约100.05 kW,而带冷量回收的液化系统功耗仅增加63.60 kW. 当 BOG 组分中氮气含量增加时, 液化率降低, 所需的制冷量、 冷却水量均降低; 当氮气含量约为5 % 时存在最小比功耗, 此时氮膨胀系统比功耗最小为0.96 kWh· kg-1 , 带冷量回收的混合工质液化系统比功耗最低为0.51 kWh· kg-1 . 带冷量回收的新型混合工质再液化系统结构紧凑、 能耗更低, 是应用于 LNG 船舶 BOG 再液化工艺的优选方案之一.
关键词:  LNG  BOG, 冷量回收, 氮膨胀液化系统, 混合工质液化系统, 比功耗
DOI:10.13380/j .ltpl.2023.03.007
基金项目:上海市青年科技英才扬帆计划(批准号:21YF1451400) , 中国船舶集团自立科技研发专项(批准号:202204Z) , 上海齐耀动力技术有限公司自主科研(批准号:K2021 Y06-JG)
Design and Analysis of New Marine Boiled off gas Re-liquefaction System
DING Zhi1, YANG Zhiqiang1, XIA Menghan2, WANG Chang1, LIU Yu1, WANG Ling2
(1.Shanghai Marine Diesel Engine Research Institute , Shanghai 201203 , China;2.Shanghai Micropowers . Ltd . , Shanghai 201203 , China)
Abstract:
Liquefied natural gas (LNG) is the fastest growing fossil fuel in the world energy market due to its low carbon dioxide emissions, high energy density and cleanliness. Using the liquefaction system to efficiently deal with the Boiled off gas (BOG) generated during LNG transportation can not only reduce the natural gas loss, but also meet the environmental requirements. Based on the requirements of BOG reliquefaction during LNG transportation, this paper designed a new mixed refrigerant reliquefaction system with cold recovery, and established four conventional BOG liquefaction systems. The working principle and internal energy transfer relationship of each system were analyzed by using chemical process simulation software, and the performance of each system under different working conditions was compared. The results show that when the BOG is pure methane, the specific power consumption and cooling water required by the liquefaction system of mixed refrigerant are significantly lower than the nitrogen expander liquefaction system, and the minimum specific power consumption of the new system is 0. 53 kWh?kg-1 , When the BOG flow increases by 100 kWh?kg-1 , the power consumption of the nitrogen expander liquefaction system increases by about 100. 05 kW, while the power consumption of the liquefaction system with cold recovery only increases by 63. 60 kW. When the nitrogen content in BOG increases, the cooling capacity, cooling water and liquefaction rate all decrease. When the nitrogen content is about 5 %, the minimum specific power consumption exists. In this case, the minimum specific power consumption of the nitrogen expansion system is 0. 96 kWh?kg-1 , and the minimum specific power consumption of the mixed refrigerant liquefaction system with cold capacity recovery is 0. 51 kWh?kg-1. The new reliquefaction system of mixed refrigerant with cold recovery has compact structure and lower energy consumption, which is an alternative scheme for LNG ship BOG reliquefaction process.
Key words:  LNG  BOG, cold recovery, expander liquefaction system, mixed refrigerant liquefaction system, specific power consumption

用微信扫一扫

用微信扫一扫