本文已被:浏览 463次 下载 0次 |
|
强磁场下的磁扭矩测量系统搭建及其在关联电子材料中的应用 |
潘森洋1,2, 张勇3, 李奇1,2, 蔡佳强1,2, 卞耀龙1,2, 张警蕾1, 皮雳1,2
|
|
(1.中国科学院合肥物质科学研究院,强磁场科学中心,极端条件凝聚态物理安徽省重点实验室,合肥 230031;2.中国科学技术大学, 合肥 230026;3.南京大学固体微结构国家实验室,南京 210093) |
|
摘要: |
磁性的精确测量可以直接反映材料的电子结构、磁矩等信息,对于综合极端条件下的物性研究至关重要。然而强磁场条件下的磁性测量方法较少,这是由于常规磁性测量所需装置尺寸过大或分辨率较低。因此亟需发展一种兼顾高精度和普适性的磁测量系统。扭矩测磁学通过测量磁化率的各向异性来表征材料磁性,是适用于强磁场下的高精度测量技术之一。本文介绍了一套自主搭建的电容式磁扭矩测量系统,其可在最高磁场45 T、最低温度0.3 K的极端条件下开展精度高达10^(-11) emu的原位转角磁扭矩测量。本文详细阐述了测量系统的原理、样品杆及载台的设计与制作、信号的标定及处理过程,并介绍了此系统在强磁场下研究材料转变磁场和德哈斯-范阿尔芬量子振荡等领域的应用。 |
关键词: 强磁场,磁扭矩,磁化率各向异性,德哈斯-范阿尔芬效应 |
DOI: |
投稿时间:2024-04-29修订日期:2024-05-11 |
基金项目:国家重点研发计划 (批准号: 2022YFA1602602) 和国家自然科学基金 (批准号: 12122411) |
|
Setup of the Torque Magnetometry System in High Magnetic Fields and its Applications in Correlated Materials |
Pan Senyang1,2, Zhang Yong3, Li Qi1,2, Cai Jiaqiang1,2, Bian Yaolong1,2, Zhang Jinglei1, Pi Li1,2
|
(1.Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;2.University of Science and Technology of China, Hefei 230026, China;3.National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China) |
Abstract: |
The precise measurement of magnetism is critical for detecting physics properties in condensed matter systems, such as electronic structure and magnetic moment, particularly in high magnetic fields. However, the conventional magnetic measurement techniques are difficult to apply in steady high magnetic field facility, primarily due to their limited anti-noise capacity and oversized devices. Torque magnetometry is an effective and high-precision method for studying magnetic anisotropy, providing a flexible and convenient tool for magnetism measurement. In this work, we designed and constructed a torque magnetometry based on capacitance cantilever system suitable for ultra-low temperatures and high magnetic fields. The device operates in the magnetic fields up to 45 T and down to 0.3 K with a precision of 10^(-11) emu, and is capable of performing in-situ rotatable measurements. We elaborated the principles of the measurement system and the fabrication of the sample pucks and inserts. Then, we discussed the calibration and signal processing methods. Finally, the reliability of our measurement system were further comfirmed by studying magnetic phase transition and de Haas van Alphen quantum oscillation in correlated materials. |
Key words: High Magnetic Fields, Torque Magnetometry, Magnetic Susceptibility Anisotropy, de Haas van Alphen Effect |